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Outline (Parts 1 and 2)

Part 1: Bayesian methods for causal inference

2.00-2.30: Review of causal inference
2.30-3.00: Review of Bayesian methods
3.00-3.30: Identifiability and sensitivity analysis
3.30-4.00: Break

Part 2: Bayesian nonparametric (BNP) models

4.00-4.45: Dirichlet process mixtures (DPM)
4.45-5.15: Dependent Dirichlet processes (DDP) and Gaussian
processes (GP)
5.15-5.30: Break

Part 3: Case studies

5.30-6.00: 1: Comparative effectivness using EHR data
6.00-6.30: 2: Causal inference with semi-competing risks
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Learning Objectives

Understand advantages of BNP for causal inference

Understand key concepts in causal inference

Understand key concepts in Bayesian inference

Understand the role of identifying restrictions and sensitivity
parameters

Compute causal estimands in the presence of confounding
using G-computation

Fit BNP models in different settings

Use R to implement the methods on one’s own data
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1 Causal Effects

2 G-formula

3 Propensity Scores

4 Mediation

5 Principal Stratification
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Observed data

Treatment: A

Often, A = 1 for treated and A = 0 for control

Pre-treatment variables: L

Outcome: Y

Data: {Ai , Li ,Yi ; i = 1 · · · , n}

Part I: Review of Causal Inference
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Potential outcomes and counterfactuals

Potential outcomes:

Y (a): outcome if treatment set to A = a

Example 1: ACE Inhibitor and blood pressure

Y (1): SBP 3 months from now if take ACE Inhibitor
Y (0): SBP 3 months from now if no medication

Example 2: kidney transplant and survival time

Y (1): survival time if receive kidney transplant
Y (0): surivival time if receive dialysis

If actually receive treatment A, then Y (A) is observed and
Y (1− A) is counterfactual.

Part I: Review of Causal Inference
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Causal effects

Causal effects are contrasts between population-level summaries of
potential outcomes on common populations, e.g.,

Average causal effect: E{Y (1)} − E{Y (0)}
Causal effect of treatment on the treated:
E{Y (1)|A = 1} − E{Y (0)|A = 1}
Quantile causal effect: F−1

1 (p)− F−1
0 (p)

F−1
a (p) is the pth quantile of the cumulative distribution

function P(Y (t) ≤ y)

Part I: Review of Causal Inference
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Causal assumptions

Ignorability

{Y (0),Y (1)}⊥⊥A|L
also called exchangeability

*note notation: a⊥⊥ b|c means a is independent of b given c

Implies
E{Y (1)|A = 1, L} ≡ E{Y (1)|A = 0, L}

Part I: Review of Causal Inference
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Causal assumptions

Positivity Assumption

P(A = a|L = ℓ) > 0 for all a and ℓ

every type of subject (defined by L) in the population has a
chance at getting assigned any treatment

Consistency Assumption

Yi = Yi (a) if Ai = a

if subject i is observed to have received treatment a then their
observed outcome is just their potential outcome for treatment
a.

Part I: Review of Causal Inference
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Causal effects from observational data - standardization

Suppose we want to identify E{Y (a)}. For simplicity, Y and L are
discrete with finite support.

E{Y (a)} =
∑
ℓ,y

y Pr{Yi (a) = y | Li = ℓ}Pr(Li = ℓ)

=
∑
ℓ,y

y Pr{Yi (a) = y | Ai = a, Li = ℓ}Pr(Li = ℓ)

=
∑
ℓ,y

y Pr{Yi = y | Ai = a, Li = ℓ}Pr(Li = ℓ)

Part I: Review of Causal Inference
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g-formula

The g-formula is a general way to identify causal effects when the
observed data distributions are known.

E (Y (a)) =

∫
E (Y |A = a, L = ℓ)p(ℓ)dℓ

or

E (Y (a)|A = 1) =

∫
E (Y |A = a, L = ℓ)p(ℓ|A = 1)dℓ

or

P(Y (a) ≤ y) =

∫ y

−∞

∫
p(Y |A = a, L = ℓ)p(ℓ)dydℓ

Notice: LHS potential outcomes; RHS observables

Part I: Review of Causal Inference
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Estimation

Suppose E (Y |A = a, L = ℓ) is known up to a parameter vector θ,
i.e., E (Y |A = a, L = ℓ; θ).

we could estimate θ

and then compute Ê (Y (t)) = 1
n

∑n
i=1 E (Yi |A = a, Li = ℓi ; θ̂)

for each a

This implicitly uses the empirical distribution of L.

Part I: Review of Causal Inference
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Estimation (cont.)

Alternatively, suppose we also know p(ℓ) up to a parameter vector
η, i.e., p(ℓ; η).

we could estimate θ and η

we could generate m draws, ℓ1, · · · , ℓm, from p(ℓ|η̂)
and then compute Ê (Y (a)) = 1

m

∑m
j=1 E (Y |A = a, Lj = ℓj ; θ̂)

for each t

This involves Monte Carlo integration. This approach is known as
g-computation.

Part I: Review of Causal Inference
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Bayesian g-computation

The Bayesian version of g-computation will be similar to previous 2
slides, except:

prior distribution for θ and (possibly) η

g-computation step at draws from posterior distribution of the
parameters

obtain full posterior for the causal effects of interest

More on this later.

Part I: Review of Causal Inference
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Propensity score

The propensity score is defined as the probability of treatment
given confounders:

e(ℓ) = Pr(A = 1 | L = ℓ).

Part I: Review of Causal Inference
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Balancing score

Assume that positivity holds.

If e(ℓ∗) = λ, then:

f (L = ℓ∗ | e(L) = λ,A = 1) = f (L = ℓ∗ | e(L) = λ,A = 0)

= f (L = ℓ∗ | e(L) = λ)

within levels of the propensity score, we have covariate
balance between treated and untreated subjects

we can recover causal effects from the distribution of the
outcome conditional on the propensity score

Part I: Review of Causal Inference
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Propensity score plot

The propensity score is sometimes plotted to assess overlap and
possible positivity violations:
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Causal inference involving propensity scores

Popular causal inference methods involving the propensity score
include:

stratification; matching; inverse probability of treatment
weighting (IPTW); augmented-IPTW

Approximate Bayesian approaches can involve conditioning on the
propensity score in an outcome model:

g-computation involving f {Y = y | A = a, e(L) = e(ℓ)}
as a ‘clever covariate’ in causal mediation

Part I: Review of Causal Inference
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Overview

Interest is often in understanding the impact that a treatment has
on the outcome through intermediate variable or variables.

need to define causal effects

we focus here on natural direct and indirect effects

consider different sets of causal assumptions
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Data and Notation

Y : outcome

M: mediator

A: treatment

L: confounders

Data: {Li ,Ai ,Mi ,Yi ; i = 1, . . . , n}

Part I: Review of Causal Inference
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Potential outcomes

M(a)

value of mediator that would be observed if A was set to a

Consistency: M = M(A)

Y (a,M(a′))

Outcome that would be observed if A was set to a and M was
set to the value that it would have taken if A was set to a′

Consistency: Y = Y (A,M(A))

Part I: Review of Causal Inference
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Natural direct effects

Natural direct effect

E{Y (1,M(0))} − E{Y (0,M(0))}

Imagine setting the mediator to the value it would take under
no treatment (M(0) – its natural value) and then comparing
the potential outcomes if treatment was set to 1 versus if it
was set to 0

Part I: Review of Causal Inference
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Natural indirect effects

Natural indirect effect

E{Y (1,M(1))} − E{Y (1,M(0))}

Imagine setting the treatment A to 1 and then comparing the
potential outcomes if mediator was set to what it would be if
treatment 1 versus if treatment 0

Part I: Review of Causal Inference
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Decomposition

We can write the total effect as the sum of the natural direct and
indirect effects:

E{Y (1)} − E{Y (0)} = E{Y (1,M(0))} − E{Y (0,M(0))}
+ E{Y (1,M(1))} − E{Y (1,M(0))}

Part I: Review of Causal Inference
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Mediation DAG with confounding

MA Y

L2

L1

Part I: Review of Causal Inference
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Causal assumptions: sequential ignorability

1 Ignorability of the assignment mechanism:

Ai ⊥⊥{Yi (a,m),Mi (a
′)}|Li = ℓ

for all (ℓ, a, a′) (i.e., no unmeasured confounding between
exposure and potential outcomes/mediators)

2 Ignorability of the mediator process:

Yi (a,m)⊥⊥Mi (a
′)|Li = ℓ,Ai = a′,

for all (ℓ, a, a′) (i.e., no unmeasured confounding between
potential outcome and mediator)

3 Positivity: P(Ai = a|Li = ℓ) > 0 and
P(Mi (a) = m|Ai = a, Li = ℓ) > 0 for all (a, ℓ,m)

Part I: Review of Causal Inference
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Identifiability

(Conditional) natural direct effect:
E{Y (1,M(0))|L} − E{Y (0,M(0))|L}

The difficult component is E{Y (1,M(0))|L}. Under the
assumptions from previous slide:

E{Y (1,M(0))|L} =

∫
E (Y |A = 1,M = m, L)dFM|A=0,L(m)

Part I: Review of Causal Inference
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Alternative causal assumptions

Mediator induction equivalence:

Assumption 1:

f (Y (1,M(0))|M(0) = m,M(1),V = v) =

f (Y (1,M(1))|M(0),M(1) = m,V = v)

Assumption 2: Joint distribution of M(0),M(1)|V follows
Gaussian copula with rank correlation ρ

Note: V might be different than L

Part I: Review of Causal Inference
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Identifiability

Under mediator induction equivalence assumptions:

E{Y (1,M(0))|V } =∫
E{Y (1,M(1))|M(1) = m0,V }f (m(0),m(1)|V )dm0dm1

Part I: Review of Causal Inference
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Bayesian approach

In the identification formulae on previous slides, need either mean
functions or distributions.

Use BNP to model the appropriate mean functions and/or
distributions

Use MC integration to ‘compute’ causal effects (this is
g-computation)

This approach avoids making strong parametric assumptions

Can use informative priors on sensitivity parameters

Part I: Review of Causal Inference
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Principal Stratification

In some situations, there is a post-treatment variable S that has an
important role in defining the causal effects of A on Y .

Examples:

Randomized trials with non-compliance

Censoring by death

Mediation (not covered today)

Part I: Review of Causal Inference
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Censoring by death

Suppose we are interested in an outcome Y some time after
treatment A:

it is possible that a subject could die S = 1 before the
outcome is observed

the risk of death might itself be affected by treatment

Challenges:

naively controlling for death could be adjusted for a
post-treatment variable (i.e., we’d be adjusting away some of
the treatment effect)

if a subject died, we do not observe Y (and it is not exactly
missing)

Part I: Review of Causal Inference
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Censoring by death

Principal stratification approach

There is a subgroup of individuals who would survive
regardless of treatment assignment: {i : Si (0) = 0, Si (1) = 0}
For these always survivors, Y is observed

We can then target the average causal effect of treatment among
the always survivors:

E{Y |A = 1, S(0) = 0,S(1) = 0}−E{Y |A = 0, S(0) = 0,S(1) = 0}

We will explore this in a case study.

Part I: Review of Causal Inference
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Review

Untestable causal assumptions are necessary

If distributions known, can use g-formula to obtain causal
effects

Bayesian version of g-formula

likelihood, prior, computation

Later today

sensitivity to uncheckable assumptions: sensitivity parameters
flexible models for distributions: weak assumptions about
observed data

Part I: Review of Causal Inference
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1 Posterior distribution

2 Prior distributions

3 Computation of the posterior

4 Causal inference

5 Data augmentation

6 Posterior inference
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The posterior distribution

Composed of two pieces
1 Likelihood (information from the data based on the model)

data: yi : i = 1, . . . , n
model: p(yi | θ)
Yi ∼ N(µ,Σ), θ = (µ,Σ)

likelihood: L(θ | y) ∝
∏n

i=1 p(yi | θ) (e.g., product of
multivariate normal densities)

2 Prior (external, a priori, information about the parameters)

p(θ) = p(µ,Σ)

idea is to update the information about the parameters in the
prior using the data through the likelihood (model)

Part 1: Review of Essential Components of Bayesian Inference
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The posterior distribution (cont.)

parameters θ

data: yi : i = 1, . . . , n

p(θ | y) = L(θ | y)p(θ)∫
L(θ | y)p(θ)dθ

it is proportional to L(θ | y)p(θ) (important for computations)

Part 1: Review of Essential Components of Bayesian Inference
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The prior distribution

quantify a priori knowledge (historical data, expert opinion,
ignorance) about θ

added importance in causal settings

data may contain no information about certain components of θ

in that case, p(θ | y) ≡ p(θ)

so the prior completely ’drives’ the inference!

the norm in causal problems

Part 1: Review of Essential Components of Bayesian Inference
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Priors for causal problems I

Consider a point treatment setting under the ignorability
assumption

the ignorability assumption implies

[Y (1)|A = 0, L] ≡ [Y (1)|A = 1, L]

Recall this assumption in uncheckable from the observed data.

For simplicitly, assume [Y (1)|A = 1, L] is a normal distribution
with mean β0 + β1L.

Part 1: Review of Essential Components of Bayesian Inference
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Priors for causal problems II

if we assume [Y (1)|A = 0, L] is also a normal distribution with the
same mean structure, α0 + α1L but different parameters

under ignorability, αj = βj .

ignorability not holding can be expressed as αj = βj +∆j ; ∆j is
not identifiable from the observed data

to quantify uncertainty about ignorability OR a deviation from it,
we can put an informative prior on ∆j (and note, the prior and
posterior will be the same for it).

the ignorability assumption implicitly assumes ∆j has the prior
p(∆j) = I{∆j = 0}.

Part 1: Review of Essential Components of Bayesian Inference
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Computation of the posterior distribution

sampling based approaches, i.e., sample from the posterior
distribution (not need to know the normalizing constant)

Markov chain Monte Carlo (MCMC), e.g., Gibbs sampling

software: JAGS, Stan, Nimble

Part 1: Review of Essential Components of Bayesian Inference
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Computation of the posterior distribution: Example I

Example: normal regression

E (Y ) = β0 + β1L

Var(Y ) = σ2

Part 1: Review of Essential Components of Bayesian Inference
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Computation of the posterior distribution: Example II

Specify priors

σ ∼ Uniform

(β0, β1) ∼ Normal

Note that 1/σ2 ∼ Gamma would be conditionally conjugate

Part 1: Review of Essential Components of Bayesian Inference
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Computation of the posterior distribution: Example III

At iteration k, Gibbs sampler samples

1 σ(k) | β(k−1), y , ℓ

2 β(k) | σ(k), y , ℓ (Normal)

3 repeat Steps 1-2 M times

Part 1: Review of Essential Components of Bayesian Inference



Outline Posterior distribution Prior distributions Computation Causal inference Data augmentation Posterior inference

Inference using the MCMC sample

two important issues:

Burn-in: has the chain reached the stationary distribution (i.e., the
posterior distribution)?

Mixing: how long to run the chain since a dependent sample from
the posterior?

Part 1: Review of Essential Components of Bayesian Inference
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Burn-in
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Mixing
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Model construction

jointly model outcome(s) and confounders (generative model) OR

directly model the distribution of outcome given confounders OR

directly model outcome given the propensity score and propensity
score (approx Bayesian)
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Bayesian G-computation I

Suppose we have a posterior sample of the parameters of the
distribution [Y |A = a, ℓ, θa] for a = 0, 1

for each posterior sample of θa we sample M realizations of L from
its unconditional distribution (potentially from its empirical
distribution)
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Bayesian G-computation II

and then for an average causal effect, compute

M∑
m=1

E [Y |A = a, ℓm, θa]

(note this step can be done in parallel for each θa)

and average these over the posterior samples of θa

this is an MC estimate of
∫
E [Y |A = a, ℓ, θa]p(θa|y , ℓ)p(ℓ)dθadℓ

Part 1: Review of Essential Components of Bayesian Inference
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Data augmentation I

data augmentation is a convenient tool within MCMC to facilitate
posterior sampling by introducing a latent indicator or sampling
missing data

consider a generalization of the linear regression to a latent class
model (connect to BNP in next section)

in particular, within the cth class assume
Y |L,C = c ∼ N(βc

0 + βc
1L, σ

2), c = 1, . . . ,K

assume C ∼ MultinomialK (ξ)

Then Y |L is a mixture of K normal distributions and updating βc

is not simple as before (not a normal distribution)
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Data augmentation II

but we can use data augmentation to facilitate sampling as follows.

Define Ui = class of subject i (takes values from {1, . . . ,K}

so at each iteration, we now also sample Ui ’s from a Multinomial
distribution with parameter proportional to

p(Ui = c |yi , ℓi , βc , σ2) ∝ p(yi |L,C = c)p(C = c)

and conditional on Ui ,

p(βc |σ2, y , ℓ,U = c) is a normal (just based on individuals with
Ui = c)

Part 1: Review of Essential Components of Bayesian Inference
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Posterior inference I

MCMC output provides a sample from the posterior of all the
parameters How summarize?

point estimate: posterior mean or median

uncertainty: 95% credible interval -created from 2.5th and 97.5th
percentiles of the MCMC output

For G-computation

as above but the causal parameters of interest are post-processed
with the MC step (G-computation step) described earlier to obtain
the posterior sample of that parameter

Part 1: Review of Essential Components of Bayesian Inference
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Posterior inference II

Hypothesis testing:

does CI cover the null value?

quantify evidence via posterior probabilities: P(θ > null | y)

for example, let θ = Y (1)− Y (0) and set the null value to zero,

P(θ > 0|y , ℓ)

Part 1: Review of Essential Components of Bayesian Inference
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Review

key features of Bayesian inference

posterior

prior

how to use the posterior for inference

issues in sampling from the posterior using MCMC

usefulness of data augmentation

ability to parallelize certain MC steps for G-computation

computing causal parameters

Part 1: Review of Essential Components of Bayesian Inference
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1 Sensitivity Parameters

2 Calibration of sensitivity parameters

3 Sensitivity to the ignorability assumption for causal inference

4 Sensitivity to monotonicity in principal stratification

Part I: Identifiability and Sensitivity Analysis
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Priors for unidentified parameters I

in causal inference settings, assumptions are required that
cannot be ’checked’ by the data

as such, inferences about certain parameters may not become
more precise as more data is collected.
Such a parameter (called a sensitivity parameter, SP), of which
the estimand of interest is likely a function, will be completely
’determined’ by the prior.

Specification of SPs will typically involve tradeoffs between
allowing a realistic range of types of violations of the
assumption and keeping the number of SPs low and
interpretable.

introduce a simple example next

Part I: Identifiability and Sensitivity Analysis
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Priors for unidentified parameters II

then provide details about sensitivity parameters for several of
the assumptions introduced in the review of causal inference

Part I: Identifiability and Sensitivity Analysis
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Example: Sensitivity parameters for ignorability I

Consider a point treatment setting under the ignorability
assumption,

Y (a)⊥⊥A|L

this implies

[Y (1) | A = 0, L] ≡ [Y (1) | A = 1, L],

and is (clearly) uncheckable from the observed data

Part I: Identifiability and Sensitivity Analysis
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Example: Sensitivity parameters for ignorability II

assume [Y (1) | A = 1, L] is a normal distribution with mean
β0 + β1L and variance σ2

assume [Y (1) | A = 0, L] is also a normal distribution with the
same mean structure α0 + α1L, but possibly different
parameters, and variance σ2

under ignorability, αj = βj : j = 0, 1.

Part I: Identifiability and Sensitivity Analysis
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Example: Sensitivity parameters for ignorability III

now embed ignorability in a more general assumption

αj = βj +∆j

∆j is not identifiable from the observed data (embedded
sensitivity parameter)

Part I: Identifiability and Sensitivity Analysis
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Example: Sensitivity parameters for ignorability IV

To quantify our prior uncertainty in how far the model deviates
from ignorability, we can put an informative prior on ∆j

note the ignorability assumption implicitly assumes ∆j has prior

Π(∆j) = I{∆j = 0}

Part I: Identifiability and Sensitivity Analysis
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Example: Sensitivity parameters for ignorability V

The impact of ∆j on the conditional mean of the potential
outcome, Y (1), can be seen as

E [Y (1)|L = ℓ] =
∑
a

E [Y (1)|A = a, L = ℓ]p(A = a|L = ℓ)

where
E [Y (1) | A = 1, L = ℓ] = β0 + β1ℓ

and

E [Y (1)|A = 0, L = ℓ] = β0 +∆0 + (β1 +∆1)ℓ.

as such, the ACE is a function of the unidentified parameters,
(∆0,∆1) (more in next section)
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How to calibrate and/or specify priors for sensitivity
parameters I

1 specify an anchoring restriction such as ignorability

2 embed that restriction in a family with
substantively-meaningful sensitivity parameters ξ,

3 decide on a plausible range (and/or a prior) for ξ to
investigate.

We just did the first two steps
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How to calibrate and/or specify priors for sensitivity
parameters II

Consider three general approaches to determine plausible
values of ξ

1 perform a tipping point analysis to identify the values of ξ
which cause our substantive inference to change; if the tipping
point region is far away from the values of ξ which are
substantively plausible then we conclude that our analysis is
robust

2 calibrate based on observed data assuming the sensitivity
parameter might be bounded based on observed data
summaries (e.g., proportion of variability explained or standard
deviations of the equivalent quantities in the observed data)
and potentially give it a ’default’ prior
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How to calibrate and/or specify priors for sensitivity
parameters III

3 work with a subject matter expert to attempt to construct a
realistic informative prior π(ξ) for ξ. By incorporating this
prior (which, due to non-identifiability, will also be the
posterior of ξ) we can arrive at a single inference which
combines all possible assumptions in a principled fashion.
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How to calibrate and/or specify priors for sensitivity
parameters IV

The first two strategies have the advantage of not requiring
subject-matter input about ξ prior to fitting the model, and
we do not have to engage in a possible complicated elicitation
process.

The second and third strategy have the potential advantage
that we reduce the range of possible inferences to a single
inference which averages over our uncertainty in ξ.
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Sensitivity to the ignorability assumption with a point
treatment I

A key assumption for identifying the average causal effect in
the point treatment setting is ignorability: Y (a)⊥⊥A | L.
here we expand (over the simple illustration earlier) on an
approach to carrying out a sensitivity analysis (and priors) for
possible violations of the ignorability assumption.
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Sensitivity to the ignorability assumption with a point
treatment II

recall, we can identify E{Y (a)} as follows:

E{Y (a)} =

∫
E{Y (a)|L = ℓ}dFL=ℓ(ℓ) (1)

=

∫
E{Y (a)|L = ℓ,A = a}dFL=ℓ(ℓ) (2)

=

∫
E{Y |L = ℓ,A = a}dFL=ℓ(ℓ) (3)

where (2) holds because of ignorability and (3) because of
consistency.
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Sensitivity to the ignorability assumption with a point
treatment III

If we are not confident in the ignorability assumption, we can
consider how to weaken it or account for uncertainty about it
(as above).

What allowed us to go from (1) to (2) is the fact that under
ignorability,

E{Y (a)|L = ℓ} = E{Y (a)|L = ℓ,A = 1} = E{Y (a)|L = ℓ,A = 0}

the difference

∆a(ℓ) = E{Y (a)|L = ℓ,A = 1} − E{Y (a)|L = ℓ,A = 0}

might not equal 0; this is a potential sensitivity parameter
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Causal estimand as function of sensitivity parameter I

Denote by Ψ the average causal effect
Ψ = E{Y (1)} − E{Y (0)}.
The contrast in standardized means can be written as the true
causal effect plus a bias term:∫

E{Y |L = ℓ,A = 1}dFL=ℓ(ℓ)−
∫

E{Y |L = ℓ,A = 0}dFL=ℓ(ℓ) = Ψ+ξ

where

ξ =

∫
[∆1(ℓ)e(ℓ) + ∆0(ℓ){1− e(ℓ)}]dFL=ℓ(ℓ)

and
e(ℓ) = P(A = 1|ℓ)
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Causal estimand as function of sensitivity parameter II

sensitivity analysis involves tradeoffs between allowing a
realistic range of the types of violations of ignorability while
also keeping the number of sensitivity parameters low and
interpretable.

For example, if we specified ∆a(ℓ) as a complex function of a
and ℓ with many parameters, there would be no realistic way
to carry out a sensitivity analysis

Alternatively, simple functions with, say, 1 to 3 interpretable
parameters allows for the possibility of having a sensitivity
analysis that can be understood by a subject matter experts
and/or specified as a function of the observed data
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Causal estimand as function of sensitivity parameter III

In our example, suppose we simplify the sensitivity parameters
by assuming that people who actually received treatment had
potential outcome Y (a) that was ∆ units different, on
average, than people who did not actually receive treatment.

Suppose the amount ∆ does not depend on a or on the values
of the confounders L,

∆ = ∆1(ℓ) = ∆0(ℓ)

Now, suppose, for example, that there was an unmeasured
confounder, independent from L, that lead to healthier people
being more likely to receive treatment.

This could be viewed as a worst case scenario, because our
observed L’s tell us nothing about the unmeasured confounder.
So, although we have simplified the problem, we did so in
such a way that could be viewed as conservative.
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Calibration of sensitivity parameters I

specify an informative prior distribution to capture our
uncertainty about ∆ (where if ∆ = 0 then ignorability holds)

calibrate it using strategy 2

Let σ be the residual standard deviation of [Y |L].
we might assume that unmeasured confounding leads to no
larger than a k standard deviation deviation from ignorability:
i.e.,

|∆| < kσ
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Calibration of sensitivity parameters II

’default’ informative priors might include a uniform
distribution over this interval or triangular priors that place
more weight on the non-zero values of ∆

for the latter, consider a mixture of a triangular prior on
(−kσ, 0) and (0, kσ) with the max at the non-zero ends of
the intervals

we could also place a prior on k
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Calibration of sensitivity parameters III

an alternative observed data summary (strategy 2) would be
to use R2 the total amount of variability in Y that is
explained by L (details in Chapter 4 in the book)
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Sensitivity to monotonicity in principal stratification I

recall, principal stratification is an approach to causal
inference with post-treatment variables.

consider, a principal stratification estimand, the survivor
average causal effect

Define S(a) to be the potential survival outcome under
treatment a.

a survivor average causal effect for a binary outcome,

SACE =
Pr [Y (1) = 1 | S(1) = 1,S(0) = 1]

Pr [Y (0) = 1 | S(1) = 1,S(0) = 1]
,
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Sensitivity to monotonicity in principal stratification II

for identification, often use a monotonicity assumption
(among other assumptions)

the (deterministic) monotonicity assumption specifies
S(1) ≥ S(0), i.e.,

Pr{S(1) = 1 | S(0) = 1)} = 1

any individual who survived without the treatment would also
survive if they had received the treatment
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Sensitivity to monotonicity in principal stratification III

To quantify uncertainty about this assumption, a stochastic
monotonicity assumption can be used instead:

Pr(S(1) = 1 | S(0) = 1) = Pr(S(1) = 1) +

ρ

[
min

{
1,

Pr(S(1) = 1

Pr(S(0) = 1

}
− Pr(S(1) = 1)

]

this generalizes the deterministic assumption with an
embedded sensitivity parameter ρ.

if π(ρ) = I{ρ = 1} (and P(S(1) = 1) > P(S(0) = 1)), the
deterministic monotonicity assumption results
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Sensitivity to monotonicity in principal stratification IV

Uncertainty about ρ (and this assumption) can be done by
placing a non-degenerate prior over [0, 1]; e.g., a triangular
prior with mode at either zero or one (based on whether want
more weight on deterministic monotonicity or the max
deviation from it)
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Summary

untestable assumptions are necessary for causal inference

here we introduced strategies for embedding sensitivity
parameters in these assumptions and illustrated this in three
common settings

we also introduced strategies for specifying ranges and/or
priors for sensitivity parameters

Part I: Identifiability and Sensitivity Analysis



Outline DPM DPM Examples EDPM EDPM Examples Summary

Part 2: Dirichlet Process Mixtures and Extensions

Part 2: Dirichlet Process Mixtures and Extensions



Outline DPM DPM Examples EDPM EDPM Examples Summary

1 Dirichlet process mixtures (DPM)

2 Examples: DPM of normals

3 Enriched Dirichlet process mixtures (EDPM)

4 Examples: EDPM

5 Summary
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Dirichlet process mixtures (DPMs) I

DPMs for a

flexible joint model, e.g., (Y ,A, L)
flexible regression model, Y |A, L (flexible mean AND ’residual’;
really just flexible conditional distribution)

allows for estimation of any (not just mean) causal effects; so
any functional of the distribution of potential outcomes

we will first introduce the Dirichlet process
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Dirichlet Processes I

The Dirichlet process (DP) is most easily understood in terms
of the stick-breaking construction

Let F be a random probability distribution on a space Θ.

If F is a Dirichlet process then it can be represented as a
countably-supported discrete distribution

F =
∞∑
j=1

wjδZj
, (1)

where the point-mass distributions δZj
are such that Zj ∼ H

for some base distribution H.
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Dirichlet Processes II

The Dirichlet process F ∼ DP(α,H) is defined by (1) and the
distribution of the weights, wj .

The weights, wj have the following stick-breaking form:

w1 = β1

wk = (1− β1)(1− β2) · · · (1− βk−1)βk : k ≥ 2

where βk are independent Beta(1, α) random variables.
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Dirichlet Processes III

The term ’stick-breaking’ comes from the following
conceptualization:

start with a ‘stick’ of length 1 and remove 100β1% of the stick
and assign this to w1;
then, from the remaining stick of length (1− β1), break off
100β2% of it and assign this piece to w2;
and so forth.
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Dirichlet Processes IV

If Y ∼ F then the weights wk correspond to the probability,

Pr(Y ̸= Zj for all j < k) = (1− β1) · · · (1− βk−1)

times the probability

Pr(Y = Zk | Y ̸= Zj for all j < k) = βk

unfortunately even if H is smooth, F will be discrete
(motivates Dirichlet process mixtures of continuous
distributions)
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Dirichlet Process mixtures (DPM) I

Dirichlet process mixture of distributions

Yi ∼ p(yi ; θi )

θi ∼ F

F ∼ DP(α,H)
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Dirichlet Process mixtures (DPM) II

this model can also be re-written as an infinite mixture

p(y ;θ) =
∞∑
j=1

wjp(y ;θj),

where wj = βj
∏j−1

l=1(1− βj) and βj ∼ Beta(1, α) and θj ∼ H.

note that the weights decay fairly quickly so typically just
’need’ first l components of the mixture
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Dirichlet Process mixtures (DPM) III
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Dirichlet Process mixtures (DPM) IV
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DPM: Truncation approximation I

∞∑
j=1

wjp(y ; θj) ≈
l∑

j=1

wjp(y ; θj)

recall w1 = β1, wj = βj
∏j−1

l=1(1− βj) for j = 2, . . . , I − 1,
βj ∼ Beta(1, α) for j = 1, . . . , I − 1 and βI = 1 (the rest of
the stick)

Ishwaran and James (2001) note how to choose I (function of
α) to minimize error

wj for the truncation approximation are said to follow a
GEM(α) distribution
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DPM: Truncation approximation II

Dirichlet process mixture (DPM) of distributions can then be
written as a (finite) latent class model (under the truncation
approximation)

w |α ∼ GEM(α)

zi |w ∼ Mult(w)

θ⋆k |H ∼ H

yi |zi , {θ⋆k} ∼ F (θ⋆zi )

where θi = θ⋆zi
suggests way to fit in JAGS or Stan
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DPM: Truncation approximation III

Simple example: Dirichlet process mixture (DPM) of normal
distributions

w |α ∼ GEM(α)

zi |w ∼ Mult(w)

θ⋆k |H ∼ H = N(µ, τ 2)

yi |zi , {θ⋆k} ∼ N(θ⋆zi , σ
2)

where θi = θ⋆zi .
so just a finite mixture of normals with weights following GEM
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Example: DPM of MVN I

Consider a joint model (Y , L) using DPM of multivariate
normals,

(Y , L) ∼
∞∑
j=1

wjN(µj ,Σj)

where (µj ,Σj)
iid∼ H, w |α ∼ GEM(α) and H is normal-inverse

Wishart distribution
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Example: DPM of MVN II

DPM of normals induces the following conditional distribution
of Y |L,

Y |L ∼
∞∑
j=1

wj(ℓ)N(Y |β0j + β1jℓ, σ
2
j )

where

wj(ℓ) =
wjN(µjℓ, σ

2
jℓ)

∞∑
j ′=1

wj ′N(µj ′ℓ, σ
2
j ′ℓ)

and β0j = µjY − σjY

σjℓ
ρjµjℓ, β1j =

σjY

σjℓ
ρj , σ

2
j = (1− ρ2j )σ

2
jY .

E [Y |L] is nonlinear and nonadditive in L and a non-normal
distribution
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Example: Causal inference using the propensity score I

Recall DPM’s allow for estimation of any (i.e., not just
average) causal effects which can be expressed in terms of the
marginal distributions of the potential outcomes f {Y (a) = y}
Using the propensity score in a regression setting, we can
specify the joint distribution of the outcome and the
propensity score using a DPM of bivariate normals

We can use the DPM of bivariate normals with (Y , L) replaced
by the outcome and the estimated propensity score, (Y , ê(L)).
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Example: Causal inference using the propensity score II

Causal effects can be computed using the distribution of
potential outcomes, which are computed using g-computation
under ignorability,

Pr{Y (a) < y} =

∫ ∫ y

−∞
f {t | A = a, ê(ℓ)} dt FL(dℓ),

the propensity score, e(ℓ) can be estimated nonparametrically
using BART

distribution of the confounders can be estimated using the
Bayesian bootstrap (see next slide)

this approach can be implemented in the R package BNPqte
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Bayesian bootstrap I

a simple prior on the distribution f (ℓ)

when distributions are not modelled explicitly, the empirical
distribution is often used

The Bayesian bootstrap can be used to incorporate
uncertainty in the empirical distribution
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Bayesian bootstrap II

The empirical distribution (implicitly) estimates the
distribution of confounders with a multinomial distribution
with fixed weight 1/n for each observed set of confounders

so the support of f (ℓ) is assumed to be just the n observed
sets of confounders

The empirical distribution of the confounders can be
represented as

fn(ℓ) =
n∑

i=1

ϖiδℓi ,

where δℓi is a degenerate distribution at ℓi and {ℓ1, . . . , ℓn}
are the observed values of the Li ’s.
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Bayesian bootstrap III

The Bayesian bootstrap is similar to using the empirical
distribution, except that the weights ϖ = (ϖ1, . . . , ϖn) are
now considered unknown parameters and given a
non-informative prior Πn

i=1ϖ
−1
i .

The resulting posterior for ϖ is Dirichlet(1, . . . , 1).

this is related to the fractional-random-weight-bootstrap

Given the simple form for the posterior and the finite support
of the distribution, integration over the distribution of the
covariates only involves computing a weighted average of the
observed covariate sets for each sample (of weights) from the
Bayesian bootstrap.
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Example: Causal inference using g-computation with
confounders I

Causal estimands can also be obtained from a DPM of
multivariate normals in the case of a continuous response and
continuous covariates (separately for each value of A) using
the g-formula,

Pr{Y (a) < y} =

∫
Pr(Y < y | A = a, L = ℓ) FL(dℓ),

Part 2: Dirichlet Process Mixtures and Extensions



Outline DPM DPM Examples EDPM EDPM Examples Summary

Example: Causal inference using g-computation with
confounders II

A ∼ Bernoulli(π) with a Beta prior on π

the marginal distribution of L takes the form,

p(ℓ) =
∑
a

∞∑
j=1

wjNormal(ℓ | a;µj ,Σj)π
a(1− π)1−a.

now to sample FL,

1 sample π from its posterior
2 sample A from a Bernoulli distribution given π
3 sample from [L | A]
4 use the sampled L to compute the integral (ignoring the

sampled A).
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Priors on parameters of base measure

For computational reasons, conjugate priors for the base
measure are preferred.

and it is preferred for the hyperparameters to be weakly data
dependent

recommendations for different situations can be found in
Daniels, Linero, & Roy (2023, book)
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Implementation of DPMs I

R package: Dirichletprocess

R package: BNPqte - DPM of (bivariate)-normals

implement in JAGS/WinBUGS or Stan or NIMBLE using
finite latent class model formulation based on the truncation
approximation

for Stan, collapse over mixture components
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Issues

there are several restrictions in the previous example

1 how to address non-continuous covariates (including a binary
treatment)?

2 within the components of the mixture, some explicit
dependence between Y and L would likely lead to better small
sample properties; note this is easily addressed without
computational difficulties with a continuous response and
covariates (just a multivariate normal) but not with a binary
response

Shahbaba and Neal (2009) address these issues
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Solution

Shahbaba and Neal allow

Outcome to be continuous or discrete

Covariates to be continuous or discrete

Local independence of covariates so easy to specify conjugate
priors
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Remaining Problem

the likelihood for cluster (mixture component) k is
p(y |ℓ; θk)

∏p
j=1 p(ℓj ;ωk)

the outcome model gets about (1/p)th of the weight of the
covariates

if p is large prediction model might suffer (important for
G-computation)

EDPM (details on next slide) extend Shahbaba and Neal and
address this remaining problem.
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Enriched DPM model (EDPM)

Wade et al. (2011, 2014) proposed a way to address this issue with
an enriched Dirichlet process mixture (EDPM):

Yi |Li , θi ∼ p(y |ℓ, θi )
Li ,j |ωi ∼ p(ℓj |ωi ),

(θi , ωi )|F ∼ F

F ∼ EDP(αθ, αω,H).

F ∼ EDP(αθ, αω,H) is defined as Fθ ∼ DP(αθ,Hθ) and
Fω|θ ∼ DP(αω,Hω|θ) with base measures H = Hθ × Hω|θ.
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Enriched DP mixture model (cont.) I

The joint distribution of (Y , L) has the following
square-breaking construction

p(y ; θ) =
∞∑
j=1

{
γjp(y | ℓ; θj)

∞∑
k

γk|jp(ℓ;ωk|j)

}

where γj = γ′j
∏j−1

ℓ=1(1− γ′ℓ) and γ′ℓ ∼ Beta(1, αθ) and θj ∼ Hθ

and where γk|j = γ′k|j
∏kj−1

ℓ=1 (1− γ′ℓ|j) and γ′ℓ|j ∼ Beta(1, αω)
and ωk|j ∼ Hω|θ.
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Enriched DP mixture model (cont.) II

The EDPM induces the following conditional distribution:

p(y | ℓ) =
∞∑
j=1

wj(ℓ)p(y | ℓ, θj), (2)

where

wj(ℓ) =
γj

∑∞
l=1 γl |jp(ℓ | ωl |j)∑∞

h=1 γh
∑∞

l=1 γl |hp(ℓ | ωl |h)
.

which have similar flexibility to DPM conditionals.
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Why EDPM for causal inference? I

Suppose we have data (Y ,A, L), where L is p × 1.

Allows many L-clusters (important for local independence)
without having to create additional Y -clusters

Simple models for L makes it easy to include many covariates

Imputation/Data augmentation of missing covariates is
straightforward (under ignorability)

for causal settings with many confounders, the EDPM should
provide improved inference based on Y | A, L.
note recent developments (Burns & Daniels, 2024 ArXiv;
Bhadra & Daniels, working paper) introduce new truncation
approximations that allow Stan
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Example: Causal inference with point treatment and many
confounders I

Consider a binary response, qc continuous covariates and qb
binary covariates where p = qc + qb.

The EDPM takes the following form:

[Yi | Li , θi ] ∼ py (y | ℓ, θi )
[Li ,j | ωi ] ∼ pc(ℓj | ωci ) : j = 1, . . . , qc ,

[Li ,k | ωi ] ∼ pb(ℓk | ωbi ), k = qc + 1, . . . , qc + qb

[Ai | ωi ] ∼ pb(a | ωqc+qb+1)

[(θi , ωi ) | F ] ∼ F

F ∼ EDP(αθ, αω,H).
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Example: Causal inference with point treatment and many
confounders II

py a Bernoulli distribution with mean g(LTi θi ), (probit link
facilitates computations)
pc is a normal distribution with mean µij and variance τ 2ij ,
pb is a Bernoulli distribution with mean πij

ωi = ({µij , τ
2
ij : j = 1, . . . , qc}, {πij : j = qc + 1, . . . , qc + qb}).
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Implementation of EDPMs

implement in JAGS/WinBUGS or NIMBLE using finite latent
class model formulation based on a truncation approximation
(Burns and Daniels, 2023 arXiv:2305.01631)
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Summary and Comparison

DPMs can be used for jointly modeling outcome and
confounders

EDPM better when many confounders for the outcome
regression model

joint modeling of outcome and confounders easily handles
(ignorable) missing confounders

illustrate EDPM in the first case study
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Part 2: Dependent Dirichlet Processes and
Gaussian Processes
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1 Gaussian Processes (GP)

2 Dependent Dirichlet Process (DDP)

3 DDP-GP

4 Causal Inference

5 Summary
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Nonparametric regression

Given data Dn = {(X1,Y1, · · · , (Xn,Yn)} with

Yi = µ0(Xi ) + εi , εi ∼ N(0, σ2
0),

how do we recover µ0(x)?

Earlier saw that µ0 ∼ BART is one approach

Gaussian process (GP) priors is an alternative

First, we will motivate GPs by looking at parametric regression
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Parametric Bayesian regression

Suppose
Yi = µ0(xi ) + εi , εi ∼ N(0, σ2

0)

Parametric model:
µ0(xi ;β) = xTβ

linear in x

Priors:

β ∼MVN(0,Σ0)

σ2 ∼IG(a, b)

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Parametric Bayesian regression

Functional form assumed known: xTβ

No uncertainty

Priors reflect uncertainty about the values of the parameters β, σ2

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Nonparametric Bayesian regression

Yi = µ0(xi ) + εi , εi ∼ N(0, σ2
0)

µ0(xi ) unknown, so specify prior distribution for it.

One popular prior for functions is Gaussian process (GP) priors

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Gaussian process

Overview:

µ0 is a random function

µ0(xi ) at some fixed point xi ∈ Rp is a random variable

µ0(x1), . . . , µ0(xn) for some fixed set of points x1, . . . , xn is a
random vector

Definition: if the distribution of µ0(x1), . . . , µ0(xn) is Gaussian for
each finite set x1, . . . , xn, then µ0 is a Gaussian process (GP)

If µ0 is a GP, then for each finite set x1, . . . , xn, µ0(x1), . . . , µ0(xn)
has a multivariate normal distribution

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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GP overview

Nonparametric: infinitely many parameters characterizing
µ0(x) when you consider all possible values of x

We will only work with a finite dimensional object: just the
function at the data points x1, . . . , xn

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Gaussian process

Suppose we have model y = µ0(x) + ε

A linear regression model assumes µ0(x) = xTβ

A Gaussian process model involves specifying a Gaussian
distribution for the unknown function µ0(x)

Gaussian process: µ0 ∼ GP(m, k)

m is a mean function and k is a covariance function

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Gaussian process

Suppose we have points x1, · · · , xn. Then, the values of µ at those
points is normally distributed. That is,

µ0(x1), · · · , µ0(xn) ∼ N{(m(x1), · · · ,m(xn)),K (x1, · · · , xn)}

You could think of m as your prior guess as to the form of the
mean function, and k as capturing your uncertainty about it.

We have to choose m and k

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Choice of m and k

If we set m(x) = xTβ, then our prior guess for µ is a linear model.

A popular choice for k is

k(xi , xj) = η exp

(
−

p∑
k=1

ρRk |xik − xjk |R
)

+ bδij

where

η and ρ are parameters

0 < R ≤ 2

b is a small value (e.g., 0.01)

δij is an indicator function taking value of 1 if i = j .

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Covariance matrix k example

k(xi , xj) = η exp
(
−ρ||xi − xj ||2

)
+ 0.01δij

var(µ0(xi )) = η + 0.01

Large value of η implies µ very different from linear
But, η penalized in the likelihood: log|k(x)|

ρ affects the degree to which the means of subjects who have
similar x will have similar µ0(x)

cov(xi , xj) = η if xi = xj , i ̸= j (this is why the δ term is
needed)

If the x ’s are all binary, then ||xi − xj ||2 is a count of the
number of covariates where subjects i and j have different
values

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Posterior

If yi ∼ µ0(xi ) + εi , where εi ∼ N(0, σ2
0) and µ0 ∼ GP(m, k), then

the posterior for µ0 is also a GP.

Suppose we are interested in the posterior of f (x̃) for some new
set of points x̃ . Denote by µ̃0, µ0(x̃)(

y
µ̃0

)
∼ N

((
m(x)
m(x̃)

)
,

(
k(x , x) + σ2

0I , k(x̃ , x)
k(x , x̃), k(x̃ , x̃)

))
.

Therefore, µ̃0|x , y , η, ρ, σ is distributed as normal with mean

m(x̃) + k(x̃ , x)[k(x , x) + σ2
0I ]

−1(y −m(x))

and variance

k(x̃ , x̃)− k(x̃ , x)[k(x , x) + σ2
0I ]

−1k(x , x̃)
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Example

Suppose truth is y = 0.3x3 + ε

Instead we fit model

y = µ0(x) + ε

µ0(x) ∼ GP(m(x), k(x))

k(xi , xj) = exp
(
−ρ(xi − xj)

2
)
+ 0.01δij

p(β0, β1, σ
2) ∼ N(0, s)× N(0, s)× IG (a, b)

Plot on next slide for n = 20 and n = 200. In one case we set
m(x) = β0 + β1x and in another m(x) = 0
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Plots on left prior mean 0; plots on right prior mean linear model
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Motivation

Previously we showed how DP priors can be used to estimate
marginal or joint distributions.

F ∼ DP(α,H)

A condition distribution could be estimated indirectly (from the
joint).

Now suppose we would like to directly estimate a conditional
distribution, p(y |x).

We are interested in a collection of distributions {Px : x ∈ X}

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Infinite mixture

Recall that we can write a DP mixture

Yi ∼ p(yi ; θi )

θi ∼ F

F ∼ DP(α,H)

as

p(y ; θ) =
∞∑
j=1

wjp(y ; θj)

where wj = γj
∏j−1

l=1(1− γl), γj ∼Beta(1, α), and θj ∼ H

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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DDP as infinite mixture

Similarly, we can write a dependent DP as an infinite mixture

p(y |x ; θ) =
∞∑
j=1

wj(x)p(y ; gj(x))

where gj(x) is a regression function

fixed weight DDPs: wj(x) = wj - weights do not depend on x

recall deriving from a DPM for (y , x) gave wj(x) with ‘known’
gj(x)
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DDP-GP

Because the form of the regression function gj(x) is unknown, we
could specify a Gaussian process prior for it.

Thus, the conditional distribution of p(y |x) can be specified with a
DDP (distribution of outcome around mean) and a GP (for mean
function)

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Continuous outcome example

p(y |x ; θ) =
∞∑
j=1

wjN(y ; gj(x), σ
2
j )

gj ∼ GP(m, k)

m(x) = xTβ

k(xi , xj) = η exp
(
−ρ||xi − xj ||2

)
+ 0.01δij

wj = γj
∏j−1

l=1(1− γl), γj ∼Beta(1, α), and σ2
j ∼ IG (a, b)

βj ∼ N(0, s)
(also priors for η, ρ, α)
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DDP+GP for Causal Inference

Data: Outcome Yi , treatment Ai , confounders Li

interest is in average causal effect

∆ =

∫
{µ1(ℓ)− µ0(ℓ)} FL(dℓ)

Specify a DDP+GP model for [Yi | Ai , Li , θ], which implies that

µa(ℓi ) =
∞∑
j=1

wj gj(a, ℓi ).
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DDP+GP for Causal Inference (cont’d)

define g = (gj(ai , ℓi ) : i = 1, . . . , n)

sample g̃ = (gj(1− ai , ℓi ) : i = 1, . . . , n) from its conditional
distribution given g

Denote the mth draw of µa(ℓi ) by µ
(m)
a (ℓi )

If use the Bayesian bootstrap for p(ℓ), at each MCMC step we
obtain ω(m) ∼ Dirichlet(1, . . . , 1).

Then compute ∆(m) as

∆(m) =
n∑

i=1

ω(m){µ(m)
1 (ℓi )− µ

(m)
0 (ℓi )}.
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Causal inference

If we have a flexible model for p(y |a, l), then we can use it to
compute the causal effects of interest.

DDP-GP is one approach to modeling p(y |a, l)
Avoids making parametric modeling assumptions

The DDP-GP combination is computationally friendly because
of properties of multivariate normals

Part 2: Dependent Dirichlet Processes and Gaussian Processes
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Summary

Gaussian process models are priors for functions

Dependent Dirichlet process priors are priors for conditional
distributions

DDP-GP can be used for full nonparametric modeling of
conditional distributions

Useful for causal inference, because we often need distribution
of outcome given treatment and confounders; and for
mediation, Y |A,M, L and M|A, L

Part 2: Dependent Dirichlet Processes and Gaussian Processes



Outline Application Causal effects BNP model Results Summary

CS 1: Comparative effectiveness using EHR Data

CS 1: Comparative effectiveness using EHR Data



Outline Application Causal effects BNP model Results Summary

1 Application

2 Causal effects

3 BNP model

4 Results

5 Summary

CS 1: Comparative effectiveness using EHR Data



Outline Application Causal effects BNP model Results Summary

Study background

Adults living with HIV infection are coinfected with chronic
Hepatitis C virus (HCV) in 10-30% of cases.

Antiretroviral therapy (ART) has been shown to help stop
progression of HIV disease and death.

It has also been shown to slow progression of HCV-associated liver
fibrosis.

As a result, current guidelines suggest initiating ART for all
HIV/HCV coinfected patients, regardless of CD4 cell count.

CS 1: Comparative effectiveness using EHR Data
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Study background

Nucleoside reverse transcriptase inhibitors (NRTIs) are a class of
antiretrovirals used to treat HIV infection.

Combinations of drugs usually include at least 3 drugs from at
least 2 different drug classes.

Certain NRTIs associated with mitochrondrial toxicity (mtNRTIs).

These include didanosine, stavudine, zalcitabine, zidovudine.

Hypothesis: use of these mtNRTIs in a HAART regimen increase
the risk of death in HIV/HCV patients compared to patients on a
HAART regimen including other NRTIs

CS 1: Comparative effectiveness using EHR Data
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Design and data

Data from Veteran’s Aging Cohort Study (VACS), 2002-2009

Treatment naive and HIV/HCV coinfected

Initiating HAART regimen with NRTI

n = 1747

exposure: mtNRTI versus other NRTI

outcome: death within 2 years of starting ART (165 total
events)

many confounders: age, race, BMI, CD4, viral load, AST,
ALT, fib4, etc.

Some laboratory variables had missing values and needed to
be imputed

CS 1: Comparative effectiveness using EHR Data
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mtNRTI use over time
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mtNRTI use over time
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Standardized differences

CS 1: Comparative effectiveness using EHR Data



Outline Application Causal effects BNP model Results Summary

Potential outcomes and causal effects

Y (a): indicator died within 2 years if A = a

Causal effect of interest

ψrr =
E{Y (1)}
E{Y (0)}

CS 1: Comparative effectiveness using EHR Data
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Causal assumptions

Consistency: Y (a) = Y among subjects with A = a

Positivity: P(A = a|L) > 0 if p(L) > 0

Ignorability: Y (a)⊥⊥A|L

CS 1: Comparative effectiveness using EHR Data
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EDPM

Let Xi = (Ai , Li )

Yi |Xi , θi ∼ Bern{logit−1(Xiθi )}
Xi ,r |πri ∼ Bern(πrr ), r = 1, . . . , p1

Xi ,r |µri , τ
2,r
i ∼ N(µri , τ

2,r
i ), r = p1 + 1, · · · , p1 + p2

(θi , πi , µi , τ
2
i ) ∼ P

P ∼ EDP(αθ, αω,P0)

where ωi = (πi , µi , τ
2
i )

CS 1: Comparative effectiveness using EHR Data



Outline Application Causal effects BNP model Results Summary

Priors

p0θ(θ) = N(θ0, cΣ
0
θ)

p0θ(σ
2) = Scale Inv − χ2(1, 1)

p0ω(π
r ) = Beta(1, 1)

p0ω(τ
2,r ) = Scale Inv − χ2(2, 1)

p0ω(µ
r ) = N(0, 2τ2,r )

p(αθ) ∼ Gam(1, 1)

p(αω) ∼ Gam(1, 1)

We set θ0 and Σ0
θ to the MLEs from an ordinary logistic regression

of Y on X and set c = 300 ≈ n/5
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Recall EDP structure
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MCMC algorithm

Generalized Pólya urn sampler:

1 update cluster membership

2 update parameters, given clusters

3 impute missing covariates, conditional on cluster membership
and parameters

4 repeat above steps many times

After collecting samples of the parameters from the Gibbs sampler,
we then post-process the output to compute the causal effect using
g-computation.
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EDPM Analysis

At last iteration of first chain:
k = 5

sy = 1: (36, 164, 134, 45, 32, 38, 76, 1)

sy = 2: (171, 211, 131, 68, 18, 1)

sy = 3: (171, 281, 172, 50, 28)

sy = 4: (137, 30, 2, 1)

sy = 5: (2)
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Results
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Data Analysis Comparisons

We also applied IPTW and TMLE methods to the data. To be
able to do that, we first needed to deal with missing covariates:

multiple imputation using predictive mean matching

implement IPTW and TMLE to each, then combine with
Rubin rules

Results:
Method Est (LCL, UCL)

BNP 1.16 (0.87,1.54)

IPTW 1.02 (0.97, 1.08)

TMLE 1.22 (1.06, 1.47)
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Summary

Problem: causal inference with missing confounders

Use EDPM to model joint distribution of observed data

Impute covariates (under ignorability/MAR) within the
MCMC

Applied method to HIV study - used 4-6 y-clusters and
additional x-subclusters

did not collapse to parametric logistic regression
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Semi-competing risks

Semi-competing risks occur in studies where observation of a
nonterminal event (e.g., progression) may be pre-empted by a
terminal event (e.g., death), but not vice versa.

In randomized clinical trials to evaluate treatments of
life-threatening diseases, patients are often observed for
specific types of disease progression and survival.

Often, the primary outcome is patient survival, resulting in
data analyses focusing on the terminal event using standard
survival analysis tools

However, there may also be interest in understanding the
effect of treatment on nonterminal outcomes such as
progression or readmission
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Application

randomized trial for the treatment of malignant brain tumors

one of the important progression endpoints is based on
deterioration of the cerebellum
biologically plausible that a patient could die without cerebellar
deterioration
thus, analyzing the effect of treatment on progression needs to
account for the fact that progression is not well-defined after
death.
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Notation

z = 0, 1 represents control and treatment group

Y z
P : progression time under treatment z .

Y z
D : death time under treatment z .

C z : censoring time under treatment z .

Fundamental to our setting is that Y z
P ̸> Y z

D (i.e., progression
cannot happen after death).
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Causal estimand

The causal estimand of interest:

τ(u) =
Pr [Y 1

P < u | Y 0
D ≥ u,Y 1

D ≥ u]

Pr [Y 0
P < u | Y 0

D ≥ u,Y 1
D ≥ u]

,

where τ(·) is a smooth function of u.

Among patients who survive to time u under both treatments,
this estimand contrasts the risk of progression prior to time u
for treatment 1 relative to treatment 0.

example of a principal stratum causal effect

CS 2: Causal inference with semi-competing risks
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Observed data

Z denote treatment assignment

X denote a vector of the baseline covariates.

the observed event times and event indicators.

YP = Y Z
P , YD = Y Z

D and C = CZ .
T1 = YP ∧ YD ∧ C ,
δ = I (YP < YD ∧ C ),
T2 = YD ∧ C ,
ξ = I (YD < C )

The observed data for each patient are
O = (T1,T2, δ, ξ,Z ,X ).
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Assumption 1

Assumption 1: Treatment is randomized, i.e.,

Z ⊥ (Y z
P ,Y

z
D ,C

z ,X ); z = 0, 1,

and 0 < Pr [Z = 1] < 1.
This holds by design in randomized trials as considered here.
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Assumption 2

Assumption 2: Censoring is non-informative in the sense that

C z ⊥ (Y z
P ,Y

z
D) X = x ; z = 0, 1,

and Pr [C z > Y z
P ,C

z > Y z
D |X = x ] > 0 for all x .
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Identification Results 1

Let λzx denote the conditional hazard function of Y z
D given

X = x
Let G zx denote the conditional distribution function of Y z

D

given X = x
Under Assumptions 1 and 2, λzx and G zx are identified

this is standard identification for survival data
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Identification Results 2

The conditional sub-distribution function of Y z
P given Y z

D and
X = x , V zx , is

V z
x (s|t) = Pr [T1 ≤ s, δ = 1 T2 = t, ξ = 1,X = x ,Z = z ],

where s ≤ t.

this sub-distribution function is also identified from
Assumptions 1 and 2

Together G zx (t) and V zx (s|t) identify the joint subdistribution
V zx (s, t) for (Y z

P ,Y
z
D) given X = x .
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Assumption 3

Assumption 3: The conditional joint distribution function of
(Y 0

D ,Y
1
D) given X = x , Gx , follows a Gaussian copula model, i.e.,

Gx (v ,w ; ρ) = Φ2,ρ[Φ
−1{G 0

x (v)},Φ−1{G 1
x (w)}],

where Φ is a standard normal c.d.f. and Φ2,ρ is a bivariate normal
c.d.f. with mean 0, marginal variances 1, and correlation ρ.

for fixed ρ, Gx is identified since G 0x and G 1x are identified

ρ will be a sensitivity parameter here - ρ = 0, independence;
ρ = 1, rank preserving assumption

similar assumptions have been used in the causal mediation
literature

CS 2: Causal inference with semi-competing risks



Outline Semi-competing Assumptions BNP Example Wrap-up

Assumption 4

Assumption 4: Progression time under treatment z is
conditionally independent of death time under treatment 1− z
given death time under treatment z and covariates X = x , i.e.,

Y z
P ⊥ Y 1−z

D Y z
D ,X = x ; z = 0, 1.
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Final identification Result

Lemma: Under Assumptions 1-4, the principal stratum causal
effect, τ(·) is identified from the distribution of the observed data
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BNP model for the observed data distribution I

need a model for the observed data, O = (T1,T2, δ, ξ,Z ,X ).

use a Dependent Dirichlet Process-Gaussian process
(DDP-GP) for the conditional distribution of V = (Yp,YD)
given X

specify independent DDP-GP for each treatment group z

the prior induces priors on non-identified (ill-defined)
quantities (i.e., progression after death), but these have no
impact on our analysis.
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Brain Cancer Data example I

randomized (placebo-controlled) phase II trial (Brem et al,
1995)

222 recurrent gliomas patients, who were scheduled for tumor
resection

The data includes 11 baseline prognostic measures and a
baseline evaluation of cerebellar function.
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Brain Cancer Data example II

Patient were randomized to receive surgically implanted
biodegradable polymer discs with or without 3.85% of
carmustine.

The follow-up duration was 1 year.

Of the 219 patients with complete baseline measures

204 were observed to die
100 were observed to progress prior to death
Of the 15 patients who did not die, 4 were observed to have
cerebellar progression.

Goal: estimate the causal effect of treatment on time to
cerebellar progression.
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Causal inference results I

posterior inference for the causal estimand, τ(u).

sensitivity parameter, ρ

fix ρ at 0.2, 0.5, and 0.8.
prior ρ ∼ Beta(0.1875, 0.0625) [mean and variance, 0.75 and
0.15]
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Causal inference results II
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Conclusions for semi-competing risk

proposed a Bayesian approach for causal inference in setting
of semi-competing risks

BNP for the observed data distribution
an interpretable causal estimand
one of uncheckable assumptions parameterized by a sensitivity
parameter

ongoing work (arXiv:2506.20860)

weaken/remove/sensitivity Assumption 4 (based on D-vines
and copulas)
alternative BNP for observed data (EDPM - allows for missing
covariates as in previous case study)

open issue

how to best determine values of the sensitivity parameter
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contacts:
Mike Daniels: daniels@ufl.edu
Jason Roy: jason.roy@rutgers.edu

Book
Daniels, Linero, Roy (2023) Bayesian nonparametrics for
causal inference and missing data, Chapman & Hall/CRC
Press.

link to R packages/code and list of relevant references,
https://github.com/theodds/CausalBNP

daniels@ufl.edu
jason.roy@rutgers.edu
https://github.com/theodds/CausalBNP
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